

SNS LLRF Reference System 402.5 MHz Section

Chip Piller January 30, 2003 Oak Ridge National Laboratory

README about this Document

- This file is SNSref.26.sxi, created Feb 7, 2003
- This document was created using OpenOffice.org, a free and open source office program available for several platforms at http://www.openoffice.org.
- Exporting this document to other formats may result in loss of information if the other file format is not open and documented.
- Please send any feedback, corrections, or suggestions to Chip Piller, email: piller@sns.gov

Outline

- What is the SNS LLRF Reference System?
- Specifications and Requirements
- What we plan to build (402.5 MHz section)
- Why it will work
- When we will build it
- Future Plans
- Acknowledgement

What is the SNS LLRF Reference System (1 of 2)?

Distributes reference signals:

- 402.5 MHz RF (precise phase)
- 352.5 MHz LO signal
- 2.5 MHz common base

What is the SNS LLRF Reference System (2 of 2)?

- Down-converts Cavity RF and Reference RF signals (402.5 MHz) to Cavity IF and Reference IF signals (50 MHz)
- Handles REF, CAV, LO, IF, FWD, REV distribution at LLRF rack

LLRF Specifications (1 of 4)

Cavity Field Control

- Amplitude +/- 1.0 % Max Steady State
- Phase +/- 1.0 degree Max Steady State

LLRF Specifications (2 of 4)

Phase Error Budget (degrees)

- Reference RF Transport +/- 0.3
- Cavity RF Transport +/- 0.3
- Control System +/- 0.4
- Total +/- 1.0

Reference

LLRF Specifications (3 of 4)

Phase Stability between adjacent cavities +/- 0.1 degree Max, not to exceed +/- 2.0 degrees between any two points in the linac

LLRF Specifications (4 of 4)

No Teflon is allowed in the tunnel!

• This makes things difficult, almost every RF component in tunnel needs to be custom made.

402.5 MHz System Design

- Master Oscillator
- Reference RF (402.5 MHz) Distribution
- Reference LO (352.5 MHz) Distribution
- Cavity RF and Reference RF Transport
- LLRF Analog Chassis
- 2.5 MHz & 10 MHz Distribution

SNS LLRF Reference System LLRF Analog Digital LLRF Chassis Chassis Master Oscillator 2.5 & 10 MHz Distribution Klystron LO (352.5 MHz) Distribution LO (755MHz) Gallery Tunnel Cavity & Reference **RF** Transport **RF** (805MHz) Cavity RF (402.5 MHz) Distribution BROOKHAVEN Los Alamos orn1

Master Oscillator (1 of 3)

Produced by Wenzel Associates.

- Direct Analog Design
 - Produces Phase Coherent Output Signals
 - Low jitter, excellent close-in phase noise characteristics
- Rack mount chassis located in Master Oscillator Rack (Row7, Rack3) between DTL and CCL
- Type N-female connectors on rear of chassis

Master Oscillator (2 of 3)

Master Oscillator (3 of 3)

Spurious:

Internal Reference: Premium 10 MHz-SCULN (501-04538E)

Output Frequencies (1 EA): 2.5 MHz, +20 dBm

10 MHz, +20 dBm 352.5 MHz, +20 dBm 402.5 MHz, +20 dBm 755 MHz, +20 dBm 805 MHz, +20 dBm

Phase Noise: 2.5 MHz 10 MHz 352.5 MHz 402.5 MHz 755 MHz 805 MHz 1 Hz -117 dBc -105 dBc -74 dBc -72 dBc -67 dBc -67 dBc 10 Hz -144 dBc -132 dBc -101 dBc -99 dBc -94 dBc -94 dBc 100 Hz -154 dBc -142 dBc -111 dBc -109 dBc -104 dBc -104 dBc 1 kHz -155 dBc -147 dBc -118 dBc -117 dBc -114 dBc -114 dBc -114 dBc 10 kHz -155 dBc -147 dBc -118 dBc -117 dBc -114 dBc Harmonics: -40 dBc

-80 dBc

SNS LLRF Reference System LLRF Analog Digital LLRF Chassis Chassis Master Oscillator 2.5 & 10 MHz Distribution Klystron LO (352.5 MHz) Distribution LO (755MHz) Gallery Tunnel Cavity & Reference **RF** Transport **RF** (805MHz)

Cavity

RF (402.5 MHz) Distribution

Reference RF 402.5 MHz Distribution (1 of 12)

- Power Amplifier
- Feed Line
- Distribution Line in Tunnel
- Temperature Control System
- Pressure Control System

Reference RF 402.5 MHz Distribution (2 of 12)

Power Amplifier

- Rack mount chassis in Master Oscillator Rack
- Gain = 40 dB
- Noise Figure < 8.6 dB
- Typical Maximum Power Output = 50 Watts
- Minimum 1 dB Compression Point = 25 Watts

Reference RF 402.5 MHz Distribution (3 of 12)

Feed Line From Master Oscillator Rack to Tunnel

- 7/8" Heliax Cable (Vp=0.89, Loss=2.5 dB/100m)
- Length = 21m, Loss = 0.6 dB
- Wavelength = 66.3 cm @ 402.5 MHz
- Feed Line approximately 32 wavelengths long
- 7/8" EIA Flange connectors
- Temperature Regulation not required at present

Reference RF 402.5 MHz Distribution (4 of 12)

Distribution Line In Tunnel

- Andrew Corporation 3-1/8" Copper Rigid Line
- Section lengths 20 feet (6.1 m)
- EIA flange connectors
- Propagation Velocity = 0.99 c
- Attenuation 0.65 dB/ 100m @ 402.5 MHz

Reference RF 402.5 MHz Distribution (5 of 12)

Distribution Line In Tunnel

- Overall Length 140 feet (42.67 m)
- Main Line Loss = 0.3 dB
- Wavelength = 73.8 cm @ 402.5 MHz
- Rigid Line Length is 42.67 m / 73.8 cm = 57.8 Wavelengths
- No bellows or flex type joints

Reference RF 402.5 MHz Distribution (6 of 12)

Distribution Line

- Directional Couplers located every 10 feet (3.05 m), not all will be used.
- Coupling value = -22 dB
- Coupler Directivity = 21dB
- Type N-female Directional Coupler Connectors

Reference RF 402.5 MHz Distribution (7 of 12)

Reference RF 402.5 MHz Distribution (8 of 12)

Reference RF 402.5 MHz Distribution (9 of 12)

Reference RF 402.5 MHz Distribution (10 of 12)

Reference RF 402.5 MHz Distribution (11 of 12)

Reference RF 402.5 MHz Distribution (12 of 12)

Temperature Control System (1 of 4)

- Reference RF distribution line in tunnel is temperature regulated to +/- 0.1C
- Two temperature controlled zones.
- Two 4 wire RTD temperature sensors per zone (one for active control, one as a monitor)
- Heat tape output is 8 W/ ft, tape applied to top and bottom of Rigid Line

Temperature Control System (2 of 4)

- Heat tape applied with copper tape and Kapton tape
- Rigid Line insulated with commercial 1.5" thick fiberglass pipe insulation sections each 3 feet long
- Visual indicator installed at end of heat tape
- Overtemp protection

Temperature Control System (3 of 4)

- Temperature Control Chassis located upstairs in RFC rack.
- Each chassis contains 2 Omega i-series PID Temperature/Process controllers with RS232/RS485 interface to Epics

Temperature Control System (4 of 4)

Pressure Control System (1 of 3)

- Copper 3-1/8" Rigid Line has air dielectric
- NPT fittings located at ends of Rigid Line
- Presently Testing Andrew Corporation
 Dehydrator/Pressure control system (5 psi gauge)

Pressure Control System (2 of 3)

- Pressure System Chassis to be located in MAO or adjacent RFC rack.
- Pressure System Chassis will monitor pressure and interface with EPICS
- Two very high accuracy absolute pressure transducers and Omega DP41 series process controllers in Chassis

Pressure Control System (3 of 3)

Reference RF and Cavity RF Transport (1 of 3)

- Cavity RF and Reference RF signals Transported from Tunnel to RFC rack using heat treated phase matched 3/8" Heliax cables.
- Phase/Temperature coefficient is -4 to +3 PPM/C (very stable)
- Propagation Velocity = 0.88 c
- Wavelength = 65.6 cm @402.5 MHz

Reference RF and Cavity RF Transport (2 of 3)

- Cable Lengths expected to be less than 120 feet (36.6 m) or 56 wavelengths
- Reference RF and Cavity RF cables will be routed through a 1" conduit in the klystron gallery to minimize cable length:
 - Reduce differential phase drift errors
 - Reduce control system feedback latency
 - Reduce temperature variations of cables

Reference RF and Cavity RF Transport (3 of 3)

- Attenuation is 7.06 dB/100m, we should see less than 3 dB loss in our cables.
- Solid corrugated copper outer conductor provides excellent shielding (> 90 dB isolation).
- Andrew Type N-male captivated connectors used, PE replacement dielectrics in Tunnel

Reference LO (352.5 MHz) Distribution (1 of 5)

- Power Amplifier
- Distribution
- Diagram

Reference LO (352.5 MHz) Distribution (2 of 5)

Power Amplifier (same type as for RF 402.5 MHz)

- Rack mount chassis in Master Oscillator Rack
- Gain = 40 dB
- Noise Figure < 8.6 dB
- Typical Maximum Power Output = 50 Watts
- Minimum 1 dB Compression Point = 25 Watts

Reference LO (352.5 MHz) Distribution (3 of 5)

Distribution

- Star type distribution
- LO phase drift OK (cancelled out in the down/up conversion process)
- 3/8" Heliax cable, all runs < 100 feet
- Type N-male captivated connectors

Reference LO (352.5 MHz) Distribution (4 of 5)

Distribution

- Eight way power splitter in Row 4
- Isolation > 30 dB
- Spare channel monitored via Epics
- All LO system components/signals accessible in racks

Reference LO (352.5 MHz) Distribution (5 of 5)

LLRF Analog Chassis (1 of 3)

- Located in RFC racks
- Performs Down-conversion of Reference RF and Cavity RF signals (402.5 MHz) to IF signals (50 MHz)
- Distributes Forward RF and Reverse RF signals
- Prototype chassis now in use with RFQ

LLRF Analog Chassis (2 of 3)

- All signals available in RFC racks
- Chassis will be Temperature Regulated (no thermal drifting of analog components)
- Uses MiniCircuits ZFM 4H level 17 double balanced mixers
- Hengjie Ma to perform additional mixer measurements

LLRF Analog Chassis (3 of 3)

Prototype Chassis

CAV

REF

FWD

RFL

BROOKHAVEN

2.5 MHz and 10 MHz Distribution (1 of 1)

- 2.5 MHz and 10 MHz will be available in Gallery
- Need input from other groups

Why We Think it Will Work

- Reference RF Distribution in Tunnel
- Radiation Resistance
- Reference RF and Cavity RF Transport

Reference RF Distribution in Tunnel (1 of 3)

- Phase drift must be less than 0.1 degree between adjacent cavities
- Phase drift will occur via Temperature and Pressure drifts.

Reference RF Distribution in Tunnel (2 of 3)

Temperature

- Temperature can be regulated to +/- 0.1 C
- Phase/Temp coefficient is 16.5 PPM/C for Copper Rigid line
- Cavity Spacing is 6 m.
- Temperature induced phase drift is therefore 0.00966 degrees between adjacent cavities

Reference RF Distribution in Tunnel (3 of 3)

Pressure

• Initial tests revealed a phase change of 0.02 degrees occurs during the dehydrator compressor cycle period for a 200 foot length of rigid line.

Radiation Resistance of Materials (1 of 3)

	Total Integrated
Material	Dose (MRad)
Teflon	0.1
Nylon	1
Polyethylene	100

- Front End/DTL: 2 Rad/hr, 40 year Total Integrated Dose = 0.4 MRad
- SCL near beamline: 60 Rad/hr, 40 year Total Integrated Dose = 12 MRad

Radiation Resistance of Materials (2 of 3)

Solid Polyethylene (PE) possesses excellent electrical properties

- Dielectric constant = 2.3 (compared to 2.1 for Teflon)
- Dielectric constant is flat vs. frequency
- Material is easily machined
- Heliax cables use low density PE foam as dielectric material

Radiation Resistance of Materials (3 of 3)

Require Custom Made components for Tunnel

- Teflon Rigid Line components being replaced by Polyethylene parts (Connecticut Microwave Corporation)
- Teflon coaxial connector components being replaced with Polyethylene parts (Molex)
- Heat tape and RTD Temperature Sensors use Kapton
- Keep RF components out of tunnel where possible, replace Teflon with Polyethylene

Reference RF and Cavity RF Transport

- Temperature Data
- Differential Phase Drift Measurement

Temperature Data (1 of 2)

Device	Temperature
RFQ	24 C (75 F)
DTL, CCL	22-26 C (72 - 79 F)
SCL	??

Expected Temperatures

Local Temperature Information

Location	Temperature	Period
Gallery	+/- 5 F	24 Hours
Chase	+/- 2 F	24 Hours
Tunnel	+/- 2.5 F	12 Months

Location	Beam On/Summer	Beam Off/Winter
Gallery	85 +/- 5 F	75 +/- 5 F
Tunnel	85 +5/-10 F	72 +/- 10 F

Temperature Data (2 of 2)

Measured Tunnel, Chase, Rack Temperatures For DTL6

Differential Phase Drift Measurement (1 of 5)

Temperature Chamber Cross Section

Differential Phase Drift Measurement (2 of 5)

Differential Phase Drift Measurement (3 of 5)

• 4 Cables, 402.5 MHz, length 251ns (66m or 217ft). Preliminary data, values in degrees.

	#1	#2	#3	#4	
100F - 80F	2.20	2.85	3.26	2.71	
100F - 70F	3.14	3.98	4.45	3.76	
80F - 70F	0.92	1.13	1.19	1.05	

	#1 - #2	#1 - #3	#1 - #4	#2 - #3	#2 - #4	#3 - #4
100F - 80F	-0.65	-1.05	-0.51	-0.41	0.14	0.54
100F - 70F	-0.85	-1.32	-0.63	-0.47	0.22	0.69
80F - 70F	-0.21	-0.27	-0.12	-0.06	0.08	0.14

Differential Phase Drift Measurement (4 of 5)

- Cable length in test was 251 ns vs. expected real cable length of less than 136 ns (84% longer than expected)
- Temperature difference in test much greater than measured data or expected temperatures in real machine
- Initial test cables were not phase matched, differential phase drift was lower on the better matched cables.

Differential Phase Drift Measurement (5 of 5)

- Continue Differential Phase Drift measurements
- Reduce cable lengths
- Reduce cable temperature fluctuations
- Phase match cables
- Cables to be sequentially pulled from same reel

402.5 MHz Schedule (1 of 1)

• LO: end of February

• RF: mid March

• Entire system: early April

Future Plans: Single Path (1 of 4)

- Baseline Design uses two parallel but completely separate analog component chains to bring Cavity and Reference signals from Tunnel to Digital Control System.
- Single Path uses a single analog component chain for both the Cavity and the Reference signals
- Single Path provides complete phase error cancellation in analog feedback path

Future Plans: Single Path (2 of 4)

• Phase Drifts/Errors eliminated from:

Future Plans: Single Path (3 of 4)

- Single Path requires:
 - Software change in control system
 - Pulsed Reference RF signal
 - Combiner in tunnel for each Cavity/Reference signal pair

Future Plans: Single Path (4 of 4)

Initial Testing shows:

- 79 dB cavity to cavity isolation in 402.5 Mhz section (field amplitude crosstalk = 0.01 %)
- 95 dB isolation for Minicircuits Model SASWA-2-50DR solid state switch for pulsed Reference RF signal

Thanks!

- Much thanks and appreciation to the following folks (and some I may have left out):
 - M. Champion, M. Crofford, T. Davidson, R. Fuja, Y. Kang, H. Ma, M. McCarthy, A. Regan, T. Rohlev, J. Stovall, D. Thomson

Coaxial Cable Properties

Cable LDF2-50 LDF5-50A LDF7-50A MACX3

Size	3/8"	7/8"	1-5/8"	3-1/8"
Loss 400 MHz	7.06	2.49	1.43	0.65 est.
Loss 800 MHz	10.2	3.63	2.13	0.91 est.
(dB/100 m)				
Propagation Velocity	0.88 c	0.89 c	0.88 c	0.99 c
Phase/Temp	-4 to +3	+3 to+7	??	16.5
(PPM/C)				
AVG Power Rating	663 W	2.19 kW	4.52 kW	15 kW est.
(1 GHz)				

